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25.1. Introduction

We have already discussed in chapters 7 and 8, the
graphical methods to determine velocity and acceleration
analysis of a mechanism. It may be noted that graphical
method is only suitable for determining the velocity and
acceleration of the linksin amechanism for a single position
of the crank. In order to determine the velocity and
acceleration of the links in a mechanism for different
positions of the crank, we have to draw the velocity and
acceleration diagrams for each position of the crank which
isinconvenient. In this chapter, we shall discussthe analytica
expressions for the displacement, velocity and acceleration
in terms of general parameters of a mechanism and
calculations may be performed either by a desk calculator
or digital computer.
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25.2. Computer Aided Analysis for Four Bar Mechanism (Freudenstein’s
Equation)
Consider afour bar mechanism ABCD, as shown in Fig. 25.1 (a), in which AB = a, BC = b,
CD = ¢, and DA =d. Thelink AD is fixed and lies along X-axis. Let the links AB (input link), BC
(coupler) and DC (output link) make angles 8, 3and ¢ respectively along the X-axis or fixed link
AD.

Y4 Y A C
b I
|
A bsin
Br—--—-- >B- ————— - b
! b cos B i
I
| c + csin ¢
a | asin 0 :
! :
! I
A A e;! < D-¢+-'--->x
acos 6 d ccos ¢
(a) Four bar mechanism. (b) Components along X-axis and Y-axis.

Fig. 25.1

The relation between the angles and link lengths may be developed by considering the
links as vectors. The expressions for displacement, velocity and acceleration analysis are derived
as discussed below :

1. Displacement analysis

For equilibrium of the mechanism, the sum of the components along X-axis and along
Y-axis must be equal to zero. First of al, taking the sum of the components along X-axis as shown
in Fig. 25.1 (b), we have

acosb+bcospB-ccosp-d =0 ()

or bcosp =ccos@+d —acos 6
Squaring both sides

b? cos? B = (ccos@ +d -acos §2

= c?cos® g +d? +2cdcos p+a cos” O

—2accos@cos 0 -2ad cos 0 ()
Now taking the sum of the components along Y-axis, we have
asnB+bsinB-csn@=0 (1D
or bsnB =csing-asin 6

Squaring both sides,
b?sin?B =(csin@-asin §2
=c?sin? p+a’sin> B-2acsin @in 0 ()
Adding equations (ii) and (iv),
b?(cos? B +sin? B) =c?(cos® p+sin® ¢ 42 Rcdcos @a(cos® 6sin® )P

—2ac(cos@cos B+sin gsin § 2adcos 6
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b? =c?+d? +2cdcos@+a® 2ac(cos @os 0-sn @n P 2adcos O

or
or 2ac(cosgcos 0 +sin @sin § = H° €°> €% fcdcos p2adcos O
. a?-pP+c?+d? d d
cos@cos 0 +sin ¢sin 6 +-cos @=cos 0 (V)
2ac a C
2 W 2..2.,42
a C 2ac
Equation (v) may be written as
... (vii)

cos@Ccos 0 +sin ¢sin 6 =k; cos ¢ K, cos B k3

or cos(p—6) or  cos(0—¢q =kjcos @-k,cos 0Ky
The equation (vii) is known as Freudenstein’s equation.
Since it is very difficult to determine the value of ¢ for the given value of @, from
equation (vii), therefore it is necessary to simplify this equation.
From trigonometrical ratios, we know that
1-tan?(q/ 2
_ 2ten(e/2) cos(p = anz(cp/ )
1+tan?(¢/ 2) 1+tan?(q/ 2)
Substituting these values of sin@and cos@ in equation (vii),

2tn(9f2) o
1 +tan?( ¢/ 2)

sing

Hm—z((plz)xcose+
1+tan?(¢/ 2)
_ 2
=k xltm—z((plz) —k2 COS@+|(3
1+tan“(@/ 2)

cosf [1-tan?(g/ 2)] +2sin Btan ( ¢2)
=k [1-tan®(@/ 2)] —k, cos B[1 +an’( ¢2)] &gl *an’( $2)]

cosf —cosBtan? (¢/ 2) +2sin etan (@ 2)
=k —kj tan?(@/2) —k, cos B —k, cos @an’( ¢2) +*; +gtan? ( ¢2)
Rearranging this equation,
—cosBtan?(q/ 2) +k tan?( @¢'2) +,cos Ban?( ¢2) kytan?( ¢2) 2sin @n ( kL)
= —c0s0 +ky —k, cos B +kg
—tanz((plz) [cos Bk —k;cos B+H] 2sin @an ( ¢2) K *; €os @ k) 9

[ A-ky)cos0 +ks —ki] tan® @2 H 2sin Otan @2 Hq K3 €1 *y)cos B £
(By changing the sign)
or Atan®(@/ 2) +Btan(@/2) +C =0 ... (viii)
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where A=(1-kp)cosO+ks +k [ ... (ix)
. 0
B =-2sin6and 0
C= kl +k3 —(1 +k2)COS BH

Inner view of an aircraft engine.
Note : This picture is given as additional information and is not a direct example of the current chapter.

The equation (viii) is a quadratic equation in tan(¢/ 2). Its two roots are

-B+VB2-4AC

tan (¢/2) =
(9/2) oA
0 2 0
-1 [TBEVB? —4ACH

From this equation (x), we can find the position of output link CD (i.e. angle @) if the
length of the links (i.e. a, b, c and d) and position of the input link AB (i.e. angle 8) is known.

If the relation between the position of input link AB (i.e. angle 8) and the position of
coupler link BC (i.e. angle 3) is required, then eliminate angle ¢ from the equations (i) and (iii).
The equation (i) may be written as
ccosg =acos 0 +bcos fd . (x0)
Squaring both sides,

c? cos® ¢ =a’ cos® B +b? cos’ B+2abcos Ecos B
+ d?-2adcos-2bd cosp ... (xii)
Now equation (iii) may be written as
csing =asin 6 +bsin B ... (xiii)
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Squaring both sides,

c?sin® g =a®sin® @ +b%sin? B+2absin @&in B e (XiIV)
Adding equations (xii) and (xiv),
c?(cos? p+sin® § =a’(cos® B+sin® O +?(cos® Bsin® [
+2ab(cos@cosp +sin Bsin B +d? —2ad cos 6-2bd cos B
or ¢ =a? +b? +2ab(cosBcos B +sin 6sin P
+d? —2ad cos6-2b d cos B

or 2ab(cos@cosp +sin Bsin ) =c? -a® b? -d? +2adcos 6+2bdcos B

2_.2 12 _42
cosBcosP +sin esinB—C aZas d +%cose+9cosB o (xv)
a

2 .2 2 2
%:k4; ang SR TDTTAT_ . (xvi)

d
a ° 2ab
O Equation (xvi) may be written as

cosBcosf +sin Bsin B =k cos 3 +k, cos 6 K5 <o (xvii)
From trigonometrical ratios, we know that

_ 2tan(Br2) o :1—tar12(B/2)

sin )
1+tan’(B/ 2) 1+tan?(B/ 2)

Substituting these values of sinf3 and cosp in equation (xvii),

0056 Ei tan (B/z)D+ eD 2tan(p/2) E

B+tan?(B/ 2)@ B +tan?(B/ 2)F

Mmk cos 0 +kg

B+ tan?(B/2)5
cos@[1—tan?(B/ 2)] +2sin Btan( B/ 2)

=k E.—tanz(B/ 2)]+k4 cos 81 +tan?( B2Y +ks @rﬂanz(ﬁ/ 2
cos@ —cosBtan? (B/ 2) +2sin Btan( B/ 2)

= Kk —k tan?(B/ 2) +k, cos 8 +k, cos btan?( B/ 2)

+ks +ks tanz([3/ 2)
—cosBtan?(B/2) +k, tan? B/ 2) —k, cos Btan? ([ 2) s tan?( B 2)
+2sinBtan(B/2) —k; —k, cos 6 -kg +cos 6 =0

—tar12(B/ 2)[(kq +1)cos B +ks —k;] +2sin Btan( '2) H(k, d)cos B4ks *;] D
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or [(kg +1)cos6 +kg —ki] tan?(p/2) +(2sin §tan( P/ 2) (ks Dcos 6ks K] D
(By changing the sign)
or Dtan?(B/2) + Etan(B/2) +F =0 .. (xviii)
D = (k4 +1)cosO +kg —kq, O
where E=-2sn6, and 0 wer (XiX)

F =[(ks —1)cosB +kg +ki]H

The equation (xviii) is a quadratic equation in tan(B/2) . Its two roots are

_ 2_
i) = E+E2-4DF

2D
0 [=2 0

or B=2tan? O E*VE® -4DF oo (X%)
H 2P H

From this equation (xx), we can find the position of coupler link BC (i.e. angle 3).
Note: The angle a may be obtained directly from equation (i) or (iii) after determining the angle @.
2. Velocity analysis
Let wy = Angular velocity of thelink AB =d6/dt,
w, = Angular velocity of the link BC =dp/dt, and

w3 = Angular velocity of the link CD = dg/dt .
Differentiating equation (i) with respect to time,

—asinex@ -bsin Bx% +csin cpxd—(p =0
dt dt dt

or —aw snB-bwsn B+ wsn ¢ o (XXi)
Again, differentiating equation (iii) with respect to time,

dp

acoso x@ +bcosf3 x— —ccos (pxd—(p =0
dt dt dt

or awy cosO +b uy cos B € wycos @ H .. (xxii)
Multiplying the equation (xxi) by cosP and equation (xxii) by sinf3,
—aw sinBcosf3 b wysin (Xos B4 wsin @os O .. (xxiii)
and awy cosBsin3+b vy cos (Bin B¢ wcos @n D e (XXIV)
Adding equations (xxiii) and (xxiv),
aw sin(B-6 +cwsn(e-p 9
. _-awsn(B-9

cSn(0-B e (XxV)
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Again, multiplying the equation (xxi) by cos@ and equation (xxii) by sSine,
—aw sinBcos @b wsn [Bos @€ gsin @@s Q& we (XxVi)

and awy cosBsin @+b wcos [Bin P€ @cos gn PG —. (XxVii)

Adding equations (xxvi) and (xxvii),

aw sSn(@-9 +b wsn( 9-p 9
0 w0, =_2wusn(e-9 .. (oxvii)
bsin(e—-P

From equations (xxv) and (xxviii), we can find wy and w,, if & b,¢,6, ¢, ad w; are

known.

3. Acceleration analysis
Let 0y = Angular acceleration of the link AB=dwy /dt,
0, = Angular acceleration of the link BC =dw, /dt , and

o3 = Angular acceleration of the link CD = dw;s/dt .
Differentiating equation (xxi) with respect to time,

—a%olcosexd— +€n exd—wl —bHogcos Bx— |in Bx—H

+c%ujcoscpxd—(p +sin wﬁa 23)

dt
E %(uv):u><ﬂ+v><z—iIj
or —awf cosB-asin 8op b o%cos B-bsn Bg
+cw§coscp+cs'n og 0 o (XXiX)
Again, differentiating equation (xxii) with respect to time,
0 . de doy [
ary X —sin 6 x— +cos 8 x—= xsin x— €0S
i m ol +b% ® B B*—H
do u>3D
—Cr{y X —Sin @X— 4C0S (P *x—=
b xsn ol s 055
or —awfsin9+acos 8oy b o%sin B4cos Bg
+cofsin g —ccos pg =0 e (X0X)

Multiplying equation (xxix) by cos@, and equation (xxx) by sin@,
~awf cosBcos p-a gsin &os b Gcos Pos @
~ba,sinBcosg +c of cos® @+ gsin @os @ e (XXX0)
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~awfsinBsin g+a gcos &in @b @sin Bn @

+ba,cosBsing+c «§sin? @€ gcos Gn @9 e (XXXT)
Adding equations (xxxi) and (xxxii),

~aof (cosqros B4sin @in P & g(sSn @os Beos gn )o
~buB(cosqeos B+sin @in B b g(sin gos Beos gn B
+cuf(cos” @ +sin® ¢ 0
-auf cos(@-9 +a gsin(@-P b Goos( 9B b gsin( IPer fw 0=

0 a,= —amsn(p-6 +aofcos(9-P b Geos( 9P e o .. (xxiil)
bsin(e-P
Again multiplying equation (xxix) by cosP and equation (xxx) by sinf,

~awf cosBcos B —a oy sin Bcos B-b ¢§cos” Bb gsin fos B
+C 6 COS ooSs B+ Gy Sin @@os B D e (XXXIV)
~awf sin 6sin B+a op cos 6sin B-b (3sin® B+ gcos Bin B
+c Sin @sin B¢ 05 Cos gsin B =0 e (XXXV)
Adding equations (xxxiv) and (xxxv),
~awf(cosBcos 6 +sin fsin § +a g (sin fcos B-cos Bin § b G(cos’ pan® P
+cof (cos goos B+sin @in B € g(sin @os Beos gn )B &
—awfcos(B-9 +a g sin(B-§ b @ € @cos( @-B & gsin( @IB &
o = —aalsin(B—6)+auf(<::(;sn(([3p—_QQ+b @ € §cos( @-PB . (oo)
From equations (xxxiii) and (xxxvi), the angular acceleration of the links BC and CD (i.e.

O

0, and ag) may be determined.

25.3. Programme for Four Bar Mechanism

The following is a programme in Fortran for determining the velocity and acceleration of

the links in a four bar mechanism for different position of the crank.

C
C

PROGRAM TO FIND THE VELOCITY AND ACCELERATION IN A FOUR-BAR
MECHANISM

DIMENSION PH (2), PHI (2), PP (2), BET (2), BT (2), VELC (2), VELB (2), ACCC (2),
ACCB (2), C1 (2), C2 (2), C3 (2), C4 (2), B1 (2), B2 (2), B3 (2), B4 (2)

READ (*, *) A, B, C, D, VELA, ACCA, THETA
Pl = 4.0 * ATAN (1.0)

THET =0

IHT = 180/THETA

DTHET = PI/IHT



1010 e Theory of Machines

DO10J=1,2* IHT
THET = (J- 1) * DTHET

AK=(A*A—-B*B+C*C+D*D)*05)

TH = THET * 180/PI

AA =AK —A * (D - C) * COS (THET) - (C * D)

BB =-20* A* C* SIN (THET)

CC=AK —A * (D + C) * COS (THET) + (C * D)

AB=BB**2-4* AA* CC

IF (AB.LT.0) GO TO 10

PHH = SQRT (AB)

PH (1) = - BB + PHH

PH (2) = - BB — PHH

DO9I= 1,2

PHI () = ATAN (PH (1) * 0.5/AA) * 2

PP (1) = PHI (1) * 180/PI

BET (I) = ASIN ((C * SIN (PHI (1)) — A * SIN (THET)) / B)

BT (1) = BET (I) * 180/PI

VELC (I) = A * VELA * SIN (BET (I) — THET) / (C * SIN (BET (I) — PHI (1))
VELB (1) = (A * VELA * SIN (PHI (I) = THET) ) / (B * SIN (BET (I) = PHI (1))))
C1(l)=A* ACCA * SIN (BET (I) - THET)

C2(I)=A* VELA * * 2* COS (BET (I) — THET) + B * VELB (I) * * 2
C3(I)=C* VELC (1) * * 2* COS (PHI (1) — BET (1))

C4 () = C* SIN (BET (1) — PHI (1))

ACCC (1) = (CL (I) = C2 (1) + C3 (I) ) / C4 ()

B1 (1) = A* ACCA* SIN (PHI (I) - THET )

B2 (1) =A * VELA * * 2* COS (PHI (I) - THET)

B3 (1) =B * VELB (I) * * 2* COS (PHI (I) = BET (I)) = C* VELC (I) * * 2
B4 (1) = B * (SIN (BET () — PHI (1))

ACCB (1) = (B1 (I) = B2 (I) — B3 (1)) / B4 ()

IF(J.NE.1) GOTO8

WRITE (*, 7)

FORMAT (4X, THET’, 4X,” PHI’, 4X,’ BETA, 4X,’ VELC', 4X, VELB’, 4X,’ ACCC, 4X,
ACCB’)

WRITE (*, 6) TH, PP (1), BT (1), VELC (1), VELB (1), ACCC (1), ACCB (1)
FORMAT (8F8 . 2)

WRITE (*, 5) PP (2), BT (2), VELC (2), VELB (2), ACCC (2), ACCB (2)
FORMAT (8X, 8F8 . 2)

CONTINUE

STOP

END

The various input variables are
A, B, C, D = Lengths of the links AB, BC, CD, and DA respectively in mm,
THETA = Interval of the input angle in degrees,
VELA = Angular Velocity of the input link AB in rad/s, and
ACCA = Angular acceleration of the input link in rad/s’.
The output variables are :
THET = Angular displacement of the input link AB in degrees,
PHI = Angular displacement of the output link DC in degrees,
BETA = Angular displacement of the coupler link BC in degrees,
VELC = Angular velocity of the output link DC in rad/s,
VELB = Angular velocity of the coupler link BC in rad/s,
ACCC = Angular acceleration of the output link DC in rad/s?,
ACCB = Angular acceleration of the coupler link BC in rad/s”.
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Example 25.1. ABCD isa four bar mechanism, with link AD fixed. The lengths of the links
are
AB = 300 mm; BC = 360 mm; CD = 360 mm and AD = 600 mm.
The crank AB has an angular velocity of 10 rad/s and an angular retardation of 30 rad/s?,

both anticlockwise. Find the angular displacements, velocities and accelerations of the links BC
and CD, for an interval of 30° of the crank AB.

Solution.
Given input :
A =300, B=360, C=360, D =600, VA =10, ACCA =-30, THETA =30
OUTPUT :
THET PHI BETA VELC VELB ACCC ACCB
.00 -—11462 —65.38 —10.00 —10.00 — 61.67 121.67
114.62 65.38 —10.00 —10.00 121.67 — 61.67
30.00 —144.88 —82.70 —8.69 - .84 101.52 181.43
97.30 35.12 - .84 —8.69 181.43 101.52
60.00 —166.19 —73.81 —6.02 6.02 38.02 77.45
106.19 13.81 6.02 —6.02 77.45 38.02
90.00 174.73 — 47.86 —8.26 12.26 —180.18 216.18
132.14 - 5.27 12.26 —8.26 216.18 —180.18
270.00 -132.14 527 12.26 - 8.26 —289.73 229.73
—174.73 47.86 - 8.26 12.26 229.73 —289.73
300.00 - 106.19 —13.81 6.02 —6.02 — 113.57 —1.90
166.19 73.81 —6.02 6.02 —-1.90 —113.57
330.00 —97.30 —35.12 -.84 —8.69 —170.39 —49.36
144.88 82.70 —8.69 - .84 —49.36 —176.39

25.4. Computer Aided Analysis For Slider Crank Mechanism

A dlider crank mechanism is shown in Fig. 25.2 (a). The slider is attached to the connecting
rod BC of length b. Let the crank AB of radius a rotates in anticlockwise direction with uniform

Y 4 Y A
B B ——
-B |
a, b Slider b ;
3 o, Yb sin (-B) |
a asin0 —p !
C A |
; _2_ G b cos (—B) ! c
0 [ | @
% 0
A L Y, x A > < Y, X
acosO B D
(a) (b)

Fig. 25.2 Slider crank mechanism.

angular velocity wy rad/s and an angular acceleration o4 rad/s’. Let the crank makes an angle @
with the X-axis and the slider reciprocates along a path parallel to the X-axis, i.e. at an eccentricity
CD = e asshownin Fig. 25.2 (a).
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The expressions for displacement, velocity and acceleration analysis are derived as
discussed below :

1. Displacement analysis

For equilibrium of the mechanism, the sum of the components along X-axis and along Y-
axis must be equal to zero. First of all, taking the sum of the components along X-axis, as shown in
Fig. 25.2 (b), we have

acosB+bcos(—p) —x =0 ... (B in clockwise direction from X-axis is taken — ve)
or bcosp = x—acos0 . ()
Squaring both sides,
b? cos? B = x? +a? cos® §—2xacos 6 .. (ii)
Now taking the sum of components along Y-axis, we have
bsin(-p) +e+asin 8 =0
or -bsinB+e=asn®
0 bsinB=e-asin® .. (iii)
Squaring both sides,

25n?@-2easin O e (iV)

b?sin’B=e? +a
Adding equations (ii) and (iv),
b?(cos? B +sin® P) =x? +&* +a’(cos® B+sn® § -2xacos H-2easin O

b2 = x2 +e? +aZ —2xacos B —2easin 0

or X% +(-2acosh) x +a° -b? +e> —2easin 6 =0
or X2 +k X +ky =0 - (V)
where k =-2acos6, and k, =a? -b? +e? ~2easin 6 e (V)

The equation (V) is a quadratic equation in X. Its two roots are

_ katkE 4k D)
2

From this expression, the output displacement x may be determined if the values of a, b, e
and @ are known. The position of the connecting rod BC (i.e. angle ) is given by

X

. asinf-e
sn(-p) ==
:e—aénG

or sinf3 b

0 B:s;in‘lte"asi”eD .. (viii)
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Note : When the slider lies on the X-axis, i.e. the line of stroke of the slider passes through the axis of
rotation of the crank, then eccentricity, e = 0. In such a case, equations (vi) and (viii) may be written as

kw =-2acos®, and k,=a®-b?

. —1[d-asinbg
and B=sin”t
b
2. Velocity analysis
Let wy = Angular velocity of the crank AB =d6/dt,

w, = Angular velocity of the connecting rod BC =df3/dt, and

Vg = Linear velocity of the slider = dx/dt.
Differentiating equation (i) with respect to time,

bx—sinBxI® =X _3 x sin g:9°
dt ot dt
or —awsin®-bwysin B—% =0 . (i)

Again, differentiating equation (iii) with respect to time,
bcosp x% = -acos Gx@
dt dt

or aw, c0s0 +b wy cos B =0 - (X)
Multiplying equation (ix) by cosf and equation (x) by sinf3,

—aw sin 6cosB—b oy Sin fos B—% c0s B0 - (Xi)

and awy cosOsin B+b wy cos Bin =0 ... (xii)
Adding equations (xi) and (xii),

aw (sinfBcos B —cos sin 6 —% xcos 3 =0

aw sin(B-96 :% xCos f3

dx _ awsin(B-6
O at cosp ... (xiii)

From this equation, the linear velocity of the slider (vg) may be determined.

The angular velocity of the connecting rod BC (i.e. w,) may be determined from equa-
tion (x) and it is given by
_—awcos )
_bc—osB .. (XIV)
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3. Acceleration analysis
Let 0, = Angular acceleration of the crank AB = dwy /dt,
0, = Angular acceleration of the connecting rod = dwy, / dt,and

ag = Linear acceleration of the slider = d®x/dt?
Differentiating equation (ix) with respect to time,

2
—a%qcosex% +sin ex%olg—bgogcos ﬁx—E sin ﬁx%é —(;sz 9
. . d?x
—aB}lsm9+ufcos%—b%orzsm B+o§cos 2 =0 e (XV)

'.t-"

: ,? 2
e 25 2
The chaln belt at the bottom of a buIIdozer prowdes powerful grip, spreads weight
and force on the ground, and allows to exert high force on the objects to be moved.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Differentiating equation (x) with respect to time,
0 de doolD dp
a -Sin Bx— +C0S Bx—= x§in k €0S 9
g a *bH ® B B

a%}lcose—(ofsinéamgazcosﬁ—u%sin =0 e (XVi)
Multiplying equation (xv) by cos3 and equation (xvi) by sin 8,
—aBulsinecos[3+ofcosecos [% _tH o sin Beos B+ 6§ cos? %

2

d“x
——— xcosPB =0 oo (XVii
o2 (xvii)

and a%}lcosesin[s—ufsin 6sin (H +4 o cos psin B-3sn’ g 0 . (xviii)
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Adding equations (xvii) and (xviii),
a%}l(sinBcose—cosBsin 6) — uf (cos Pcos B +sin RN 65

. d?x
~buj(cos? B +sin? B el >cos B =0
2
aa;sin@-0)-auwfcos(B-9 b 3 _((jj;( >c0s B
t

- d° _acysn@-6)-acfcos(B-9 b 3 - ()
dt? cosf
From this equation, the linear acceleration of the slider (ag5) may be determined.

The angular acceleration of the connecting rod BC (i.e. a,) may be determined from
equation (xvi) and it is given by,

o = a(alcose—mfsin@ -b o%sjn B
2 bcosp

e (XX)

25.5. Programme for a Slider Crank Mechanism

The following is a programme in Fortran to find the velocity and acceleration in a slider
crank mechanism.

c PROGRAM TO FIND THE VELOCITY AND ACCELERATION IN A SLIDER
c CRANK MECHANISM
READ (*, *) A, B, E, VA, ACC, THA
Pl = 4 * ATAN (1)
TH=0
IH = 180/THA
DTH =PI / IH
DO10I=12*IH
TH=(1-1)* DTH
BET = ASIN (E— A * SIN (TH) ) / B)
VS=—A* VA * SIN (TH — BET) / (COS (BET) * 1000)
VB =—A * VA * COS (TH) / B * COS (BET)
ACL=A* ACC* SIN (BET—TH)—B* VB * * 2
AC2=A* VA * * 2* COS (BET — TH)
ACS = (AC1 — AC2) / (COS (BET) * 1000)
AC3=A* ACC* COS (TH) —A * VA * * 2* SIN (TH)
AC4=B* VB * * 2* SIN (BET)
ACB = — (AC3—AC4) / (B * COS (BET) )
| F (i . EQ. 1) WRITE (*, 9)

9 FORMAT (3X,” TH’, 5X,’ BET’, 4X,” VS, 4X,’ VB, 4X, ACS, 4X, ACB’)
10 WRITE (*,8) TH * 180/ P | , BET * 180/ P 1, VS, VB, ACS, ACB
8 FORMAT (6 F 8 . 2)

STOP

END
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The input variables are :
A, B, E = Length of crank AB (a), connecting rod BC (b) and offset (€) in mm,
VA = Angular velocity of crank AB (input link) in rad/s,
ACC = Angular acceleration of the crank AB (input link) in rad/s?, and
THA = Interval of the input angle in degrees.
The output variables are :
THA = Angular displacement of the crank or input link AB in degrees,
BET = Angular displacement of the connecting rod BC in degrees,
VS = Linear velocity of the slider in m/s,
VB = Angular velocity of the crank or input link AB in rad/s,
ACS = Linear acceleration of the slider in m/s?, and
ACB = Angular acceleration of the crank or input link AB in rad/s’.

Example 25.2. In a dlider crank mechanism, the crank AB = 200 mm and the connecting
rod BC = 750 mm. The line of stroke of the dlider is offset by a perpendicular distance of 50 mm.
If the crank rotates at an angular speed of 20 rad/s and angular acceleration of 10 rad/s®, find at
an interval of 30° of the crank, 1. the linear velocity and acceleration of the slider, and 2. the
angular velocity and acceleration of the connecting rod.

Solution.
Given input :
A = 200, B = 750, E = 50, VA = 20, ACC=10, THA =30
OUTPUT :
TH BET V'S V B ACS ACB
.00 3.82 27 -5.32 —101.15 —.78
30.00 —3.82 —-223 —4.61 — 83.69 49.72
60.00 —9.46 —3.80 - 2.63 — 35.62 91.14
90.00 —-11.54 —4.00 .00 14.33 108.87
120.00 —9.46 -313 2.63 4471 93.85
150.00 —3.82 - 1.77 4.61 55.11 54.35
180.00 3.82 -.27 5.32 58.58 4.56
210.00 11.54 1.29 453 62.42 —47.90
240.00 17.31 284 2.55 57.93 —-93.34
270.00 19.47 4.00 .00 30.28 —113.14
300.00 17.31 4.09 — 255 —21.45 —96.14
330.00 11.54 271 — 453 —75.44 —52.61

25.6. Coupler Curves

It is often desired to have a mechanism to guide a point along a specified path. The path
generated by a point on the coupler link is known as a coupler curve and the generating point is
called a coupler point (also known as tracer point). The straight line mechanisms as discussed in
chapter 9 (Art. 9.3) are the examples of the use of coupler curves. In this article, we shall discuss
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the method of determining the co-ordinates of the cou- Y4
pler point in case of a four bar mechanism and a slider
crank mechanism.

1. Four bar mechanism

Consider a four bar mechanism ABCD with an B P
offset coupler point E on the coupler link BC, as shown
in Fig. 25.3. Let the point E makes an angle a with BC a
in the anticlockwise direction and its co-ordinates are E
(XE, yE) A 0

I
I
I
|
I
I
i
First of all, let usfind the value of BD, Y and . /77@7}7 B, d E | |
From right angled triangle BB, D, D

BB, BB, _ asn@ Fig. 25.3. Four bar mechainsm
B,D T AD- AB; “d-acosh with a coupler point.

XV

tany =

10 asing O

or y=tan "g——[

d —acosép

and  (BD)? =(BBy)” +(B,D)* =(BBy)” +(AD -AB)
=(asin6)? +(d —acos 6)°
=a’sin? 0+d? +a’cos” H-2ad cos O
=a®(sin® 9 +cos? ) +d? —2ad cos 8

=a’ +d? -2adcos®
Now in triangle DBC,

BD)? +(BC)? - (CD)?
cos(y +P) = (BD) ZéCx)BD( ) ... (cosine law of triangle)

f24p2 -
2bf

0f 2 +p? -c?0
E 2b f

10f2 +p? -c20

O B=cos Wﬁ—y . (i)

Let us now find the co-ordinates x and y.. From Fig. 25.3, we find that

or y+PB =cos *

11

Xg = AE, = AB, +B,E, =AB; +BE; . (- BE; =BE)

=acosf +ecos(a+p) (D)

and Ve = E,E=EE +EE =B B+EE .. (- E;E=BB)
=asinf+esin(a+p) ... (i)

From the above equations, the co-ordinates of the point E may be determined if a, €, 9, a
and 3 are known.
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2. Slider crank mechanism

Consider a dlider crank mechanism with an offset coupler point E, as shown in Fig. 25.4.
Let the point E makes an angle a with BC in the anticlockwise direction and its co-ordinates are

E (XE1 yE)
First of all, let us find the angle B . From right angled triangle BC,C,

BC, _BB,—BiC; _asinb-g Y4
SMB=ge T e b Exe, )
e 1
. —1asin6-g0 : Be <1
| =gn 1 (IV) o/ ) B,
S R L
I
Now Xz = AE; = AB, +B,E; =AB; +BB, AN Slider
a ! 1
=acos6 +ecos(a-p) e (V) C:_ ______ J.li ™Nc
1: | - T
and Ve = BE = E;B, +B)E =BB +B,E R I R TR
=asin@ +esin(a-p) (vi) //7&;‘;2 B & D X

Fig. 25.4 Slider crank mechanism with

From the above equations, the co-ordinates of the coupler poirt.

point E may be determined, if a, b, e, e, 6, a and B
are known.

Note : When the slider lies on the X-axis, i.e. the line of stroke of the slider passes through the axis of
rotation of the crank, then eccentricity e, = 0. In such a case equation (iv) may be written as

_ . -1[0asinég
P il

25.7. Synthesis of Mechanisms

In the previous articles, we have discussed the computer-aided analysis of mechanl sms ie
the determination of displacement, velocity
and acceleration for the given proportions
of the mechanism. The synthesis is the
opposite of analysis. The synthesis of
mechanism is the design or creation of a
mechanism to produce a desired output
motion for a given input motion. In other
words, the synthesis of mechanism deals
with the determination of proportions of a
mechanism for the given input and output
motion. We have aready discussed the
application of synthesisin designing acam
(Chapter 20) to give follower a known
motion from the displacement diagram and
in the determination of number of teeth on
the members in a gear train (Chapter 13)
to produce a desired velocity ratio.

In the application of synthesis, to
the design of a mechanism, the problem
dividesitsalf into the following three parts:

Roller conveyor.
Note : This picture is given as additional information and is
not a direct example of the current chapter.
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1. Type synthesis, i.e. the type of mechanism to be used,

2. Number synthesis, i.e. the number of links and the number of joints needed to produce
the required motion, and

3. Dimensional synthesis, i.e. the proportions or lengths of the links necessary to satisfy
the required motion characteristics.

In designing a mechanism, one factor that must be kept in mind is that of the accuracy
required of the mechanism. Sometimes, it is possible to design a mechanism that will theoretically
generate a given motion. The difference between the desired motion and the actual motion produced
is known as structural error. In addition to this, there are errors due to manufacture. The error
resulting from tolerances in the length of links and bearing clearances is known as mechanical
eror.

25.8. Classifications of Synthesis Problem

The problems in synthesis can be placed in one of the following three categories :
1. Function generation ; 2. Path generation ; and 3. Body guidance.
These are discussed as follows :

1. Function generation. The major classification of the synthesis problems that arises in
the design of links in a mechanism is afunction generation. In designing a mechanism, the frequent
requirement is that the output link should either rotate, oscillate or reciprocate according to a
specified function of time or function of the motion of input link. This is known as function genera-
tion. A ssimple example isthat of designing a four bar mechanism to generate the function y = f (x).
In this case, x represents the motion of the input link and the mechanism is to be designed so that
the motion of the output link approximates the function y.

Note : The common mechanism used for function generation is that of a cam and a follower in which the
angular displacement of the follower is specified as a function of the angle of rotation of the cam. The
synthesis problem is to find the shape of the cam surface for the given follower displacements.

2. Path generation. In a path generation, the mechanism is required to guide a point (called
atracer point or coupler point) along a path having a prescribed shape. The common requirements
are that a portion of the path be a circular arc, elliptical or a straight line.

3. Body guidance. In body guidance, both the position of a point within a moving body
and the angular displacement of the body are specified. The problem may be a ssimple tranglation
or a combination of trandation and rotation.

25.9. Precision Points for Function Generation

In designing a mechanism to generate a particular function, it is usually impossible to
accurately produce the function at more than a few points. The points at which the generated and
desired functions agree are known as precision points or accuracy points and must be located so
as to minimise the error generated between these points.

The best spacing of the precision points, for the first tria, is called Chebychev spacing.
According to Freudenstein and Sandor, the Chebychev spacing for n pointsin therange xg < X< Xg
(i.e. when x varies between x5 and X;) is given by

X :%(Xs +X) —%(XF —xs)cosg%g 0

Ot(2j -)o

:E( + )—EXAxxcos
28T H 2n H
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where X = Precision points
Ax =Rangein x =X —Xg, and
j=1,2,..n
The subscripts ¢ and  indicate start and finish positions respectively.
The precision or accuracy points may be easily obtained by using the graphical method as
discussed below.
1. Draw acircle of diameter equal to the range AX = Xg —Xg.

2. Inscribe a regular polygon having the number of sides equal to twice the number of
precision points required, i.e. for three precision points, draw a regular hexagon inside the circle,
as shown in Fig. 25.5.

3. Draw perpendiculars from each corner which intersect the diagonal of acircle at preci-
sion points X;, Xy, Xs.

Now for therange 1< x< 3, x5 =1, x =3, and

0 AX=X—X%X =3-1=2
or radius of circle, r=Ax/2=2/2=1
AX 2
X =Xt =X +— =1+— =2
O 2 = Xg Xs 5 5 X x
¥ = X, =1 cos30° =X, —% cos30° }%
2
:2—500530" =1.134 f—— Ax = Xz — xg—
Ax Fig. 25.5. Graphical method for
and X3 = X, +1€0S30° = X, +—€0s30° determining three precision
2 points.
= 2+§cosSO° =2.866
25.10. Angle Relationships for Function Generation
0A
— X
(@) Four bar mechanism. (b) Linear relationship between x and 6.

Fig. 25.6
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Consider afour bar mechanism, as shown in Fig. 25.6 (a) arranged to generate a function
y = f(X) over alimited range. Let the range in X is (xz — X) and the corresponding range in 6 is
(6 — 65) . Similarly, let therangeinyis ((Yg — Ys) and the corresponding rangein @ is (¢ — @) .

The linear relationship between x and @ isshown in Fig. 25.6 (b). From the figure, we find
that

(X =) ()
Xp =X
Similarly, the linear relationship betweeny and ¢ may be written as

0=6+

An automatic filling and sealing machine.
Note : This picture is given as additional information and is not a direct example of the current chapter.

For n points in the range, the equation (i) and (ii) may be written as

B =68+ 07 S () —x) =05+ (x; ~x6)
- A X
and 9 =@ L _%(y; Ys) =@ +A7(p(y,- -Ys)
YF~Ys Ay
where =12, ..n,
AX=Xg = Xg; AB =6 —6;,

Ay=Ye-ys; and Ap=@ —-q@
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Example 25.3. A four bar mechanismis to be designed, by using three precision points, to
generate the function

y = x5, for therange 1< x<4.

Assuming 30° starting position and 120° finishing position for the input link and 90°

starting position and 180° finishing position for the output link, find the values of X, y, 8 and @
corresponding to the three precision points.

Solution : Given: Xg=1;X-=4; 65=30° ; O =120° ; @5 =90° ; @r =180°
Values of x

The three values of x corresponding to three precision points (i.e. for n = 3) according to
Chebychev’s spacing are given by

Xj =E(Xs +XF) _E(XF —><s,)cosDT(2j _1)5, wherej =1, 2 and 3
2 2 d 2n B :
. % =50+ —%(4—1)cos%§ = 12Ans =
%=1+ —%(4—1)cosw§ - 25Ans =2
and = @+ —1)008§T%§ =38 Ans =9

Note : The three precision points x,, X, and x, may be determined graphically as discussed in Art. 25.9.

Values of y
Sincey = x!° , therefore the corresponding values of y are

v = () =(@1.2)1° = 1.316 Ans.
yo = (%) = (2.5)1° = 3.952 Ans.
y3 = (%)1° =(3.8)1° =741 Ans,

Note:  ys=(xg)"° =" =1 and y.=(x)""=(4"° =8
Values of 8
The three values of @ corresponding to three precision points are given by
B — 65
) =65+ (Xj =%) , wherej = 1, 2 and 3
i XE — Xg j ) 1=1
120-30
| 91 =30+ (1.2 —1) = 36° Ans.
4-1
120-30
92 =30+ (2.5 —1) = 75° Ans.
4-1
120-30
and 6; =30+ (3.8-1) = 114° Ans.

4-1
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Values of @

The three values of @ corresponding to three precision points are given by

0 =@ M(Y; -Ys)
YE~Ys
180-90

8-1

0 @ =90 + (1.316 1) = 94.06° Ans.

180-90
8-1

@, =90 + (3.952 -1) =127.95° Ans.
180-90

and =90 +
& 8-1

(7.41-1) = 172.41° Ans.

25.11. Graphical Synthesis of Four Bar Mechanism

The synthesis of four bar mechanism consists of determining the dimensions of the linksin
which the output link isto occupy three specified positions corresponding to the three given positions
of theinput link. Fig. 25.7 shows the layout of afour bar mechanism in which the starting angle of
the input link AB, (link 2) of known lengthis 6. Let 6,,, 8,3 and 6,5 be the angles between the
positions B,B,, B,B; and B,B; measured anticlockwise. Let the output link DC, (link 4) passes

through the desired positions C,, C, and C; and @5, @3 and @5 are the corresponding angles

between the positions C,C,, C,C; and C,C;. The length of the fixed link (link 1) is also known.
Now we are required to determine the lengths of links B,C, and DC, (i.e. links 3 and 4) and the
starting position of link 4 ().
The easiest way to solve the problem is based on inverting the mechanism on link 4. The
procedure is discused as follows :
1. Draw AD equa to the known length of fixed link, as shown in Fig. 25.8.
2. At A, draw the input link 1 in its three specified angular positions AB,, AB, and AB,.

3. Since we haveto invert the mechanism on link 4, therefore draw aline B,D and and rotate
it clockwise (in a direction opposite to the direction in which link 1 rotates) through an

angle @ (i.e. the angle of the output link 4 between the first and second position) in
order to locate the point B, .

Fig. 25.7. Layout of four bar mechanism.

4. Similarly, draw another line B;D and rotate it clockwise through an angle @3 (i.e. angle
of the output link between the first and third position) in order to locate point Bj.
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25.12.

Fig. 25.8. Design of four bar mechanism (Three point synthesis).

. Since the mechanism is to be inverted on the first design position, therefore B, and B; are

coincident.

. Draw the perpendicular bisectors of thelines B; B, and B, Bj. These bisectors intersect

at point C,.

. Join B/ C; and C,D . Thefigure AB, C,D isthe required four bar mechanism. Now the

length of the link 3 and length of the link 4 and its starting position (@) are determined.

Graphical Synthesis of Slider Crank Mechanism
Consider a dider crank mechanism for which the three positions of the crank AB (i.e.

0,, 8, and 63) and corresponding three positions of the dider C (i.e. s, s, and s;) are known, as
shown in Fig. 25.9.

1

2.

In order to synthesis such a mechanism, the following procedure is adopted.

First of al, draw the crank AB, in itsinitia position. If the length of crank is not speci-
fied, it may be assumed.

Now find the *relative poles P, and P,, as shown in Fig. 25.10. The relative poles are
obtained by fixing the link A and observing the motion of the crank AB, in the reverse
direction. Thus, to find P,,, draw angle YAP,, equal to half of the angle between the first
and second position ( 6,,) in the reverse direction and from AY draw P, equal to half of
the slider displacement between the first and second position (i.e. s,,). Similarly P,, may
be obtained.

. From P, and P,;, draw two lines P, Q,, and P ; Q,5 such that AR, I= 0 B,R, Q,

and OAR; O BR;Q;. Thelines P, Q,, and P53 Q,; intersect at C,, which is the
location of the slider at its first position. Now the length of the connecting rod B,C, and
the offset (e) may be determined.

*  The relative pole is the centre of rotation of the connecting rod relative to the crank rotation and
the corresponding slider displacement.
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3 2 1
d 1 1 1 1 .
<+ + + —»
S3 2 Je——s,/—>| &
[P »!
< Si3 >l

A

(b) Three positions of the dlider.
Fig. 25.9

Fig. 25.10

25.13. Computer Aided (Analytical) Synthesis of Four Bar Mechanism

0 ¢ AR 3 2
P T
A D

(a) Four bar mechanism. (b) Three positions of input and output link.
Fig. 25.11

Consider a four bar mechanism as shown in Fig. 25.11.

The synthesis of a four bar mechanism, when input and output angles are specified, is
discussed below :

Let the three positionsi.e. angular displacements (6,, 8, and 8;) of the input link AB and
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the three positions (@, @ and ¢3) of the output link, as shown in Fig. 25.11 (b), are known and
we have to determine the dimensions a, b, ¢ and d of the four bar mechanism.

We have discussed in Art. 25.2 that the Freudenstein’s equation is

ki cos@ —ky cos 8 +kg =cos( 60— ¢ .. (D)
d a’-b% +c? +d? y
where kl:% : kzzg ; and kng .. (i)

For the three different positions of the mechanism, the equation (i) may be written as

ky cos@ —k, cos§ +k; =cos(§ —¢) . (i)
ki cos@, —k, cos 6, +ky =cos( 6 —@) ... (iv)
and ki cos@s —ky cos 6; +ky =cos( & —@) e (V)

An off-shore oil well.
Note : This picture is given as additional information and is not a direct example of the current chapter.

The equations (iii), (iv) and (v) are three simultaneous equations and may be solved for k,
k, and k, either by elimination method (See Examples 25.4 and 25.5) or by using Cramer’s rule of
determinants as discussed below :
cosq cosf 1
A=|cosg cos6 1
cos@; cos6; 1

cos(0,-@) cos§ 1
A;=|cos(B,-@®) cos6 1
cos(B3—-¢;) cos@ 1
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cos@,
A, =|cosy,
COS(P;
cos@
Az =| cos@,
Cos(

cos(g -

cos( 8,

cos §
cos 6,
cos 65

@ 1

-@) 1
cos(6; —

@ 1

cos(§ - @)
cos(§ -@)
cos(6; - @)

Now the values of k,, k, and k; are given by

A,

A A

e 1027

Once the values of k;, k, and k, are known, then the link lengths a, b, ¢ and d are determined
by using equation (ii). In actual practice, either the value of a or d is assumed to be unity to get the

proportionate values of other links.

Note : The designed mechanism may not satisfy the input and output angle co-ordination at positions other
than these three positions. It is observed that afour bar mechanism can be designed precisely for five positions
of the input and output links provided 8 and ¢ are measured from some arbitrary reference rather than from
the reference fixed link AD. In such cases, the synthesis eguations become non-linear and some other means
are required to solve such synthesis equations.

25.14. Programme to Co-ordinate the Angular Displacement of the Input

and Output Links

The following is the programme in Fortran to co-ordinate the angular displacements of the

input and output links.

C PROGRAM TO COORDINATE ANGULAR DISPLACEMENTS OF
C THE INPUT AND OUTPUT LINKS IN THREE POSITIONS
READ (*, *) QL, Q2, Q3, P1, P2, P3

RAD = 4 * ATAN (1.0) / 180
QA = COS (Q1 * RAD)

QB = COS (Q2 * RAD)

QC = COS (Q3 * RAD)

PA = COS (P1 * RAD)

PB = COS (P2 * RAD)

PC = COS (P3 * RAD)

AA = COS ((Q1 - P1) * RAD)
BB = COS ( (Q2 - P2) * RAD)
CC = COS ((Q3-P3) * RAD )

D=PA* (QB-QC)+ QA * (PC - PB) + (PB * QC — PC * QB)
D1=AA * (QB —QC) + QA * (CC—BB) + (BB * QC — CC * QB)
D2=PA * (BB — CC) + AA * (PC — PB) + (PB * CC — PC * BB)
D3=PA * (QB * CC—QC * BB) + QA * (BB * PC—CC* PB) + AA * (PB * QC — PC * QB)

Al=D/D1
A2 =SQRT (A1* A1+ A3* A3+1.0-2* A1* A3* D3/D)
A3 =-D/D2
WRITE (*, 1) A1, A2, A3, 1

1 FORMAT (6X, AL, 7X,;” A2, 7X; A3 7X, A4’ | 4F8 . 2)
STOP

END
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The input variables are :
Q,, Q, Qg = Angular displacement of the
input link AB in degrees,
P,, P, P; =Angular displacement of the
output link DC in degrees.
The output variables are :

A B, C, D = Ratio of length of the links AB,
BC, CD and AD respectively

Example 25.4. Design a four bar mechanism
to co-ordinate the input and output angles as follows :

Input angles = 15°, 30° and 45° ; Output angles
= 30°, 40° and 55°.

Solution. Given : 8, =15° ; 8, =30° ;
B3 =45°; @ =30°; @, =40°; @3 =55°
The Freudenstein’s equation for the first position

of the input and output link (i.e. when 6; =15° and
Grinding machine.
Note : This picture is given as additional
[ i i i f th
ky C0S30° — k, COS15° + kg = cos(15° -309) information ancilljsrrzﬁi ihd;;igtr.example of the
or 0.866 k, — 0.966 k, + k, = 0.966 e (i)
Similarly, for the second position (i.e. when 8, =30° and ¢, =40°),
ky c0s40° -k, cos30° + ks =€0s(30°-409)
or 0.766 k; — 0.866 k, + k, = 0.985 e (i)

and for the third position (i.e. when 65 =45° and @3 =55°),

@ =30°) may be written as

ki cos55° —k;, c0s45° + kg =cos(45° -55°9)
or 0.574 k; — 0.707 k, + k, = 0.985 .. (iii)
Solving the three simultaneous equations (i), (ii) and (iii), we get
k, =0.905; k, = 1.01 and k; = 1.158

Fig. 25.12

Assuming the length of one of the links, say a as one unit, we get the length of the other
links as follows :

Weknow that  k, =d/a or d=k; a=0.905 units Ans.



Chapter 25 : Computer Aided Analysis and Synthesis of Mechanisms ¢ 1029
k,=d/corc=d/k,=0.905/1.01 = 0.896 units Ans.

_ a®-b® +c? +d?

and k:
8 2ac

or —b? =kg x2ac —(a? +c? +d?)
=1.158 x 2 x 1 x 0.896 — [1? + (0.896) + (0.905)]
=2075-2622=-0547 or b=0.74 units Ans.

The designed mechanism with AB = a = 1 unit, BC = b = 0.74 units ; CD = ¢ = 0.896 units
and AD = d = 0.905 units, is shown in Fig. 25.12.

Example 25.5. Determine the proportions of four bar mechanism, by using three precision
points, to generate y = x™°, where x varies between 1 and 4. Assume 85 =30°; AB=90° ;

(s =90°; and A@ =90°. Take length of the fixed link AD as 25 mm.
Solution. Given : xg = 1; Xz =4 ; 65=30° ; A6=0--& =90°, @5 =90°;
Ap=@¢ —@ 90 °;d=25mm

We have already calculated the three values of x and y for the above given datain Example
25.3. These values are :

X, =12; X, =25 and X;=38

y, =1316; vy,=3952; and y,=741
The corresponding values of § and ¢ are

6, =36°; B, =75° ; and 65 =114°

@ =94.06°; @, =127.95° ; and @3 =172.41°
We know that the Freudenstein’s equation is

ki cos@ —ky cos 8 +kg =cos( 60— 0]

d d a®-b® +c? +d? ;

where k== k,=— ; and ken=-—— = = ... (i)
! a 2 c 8 2ac

Now for the three different positions of the mechanism, the equation (i) may be written
three times as follows :

ki c0s94.06° — Kk, c0s36° + k3 =€0s(36° -94.06°)

or —0.0708 k, — 0.809 k, + k; = 0.529 (1))
Similarly  k c0s127.95° - k, c0s75° + kg =c0s(75° -127.95°)

or —0.615 k; — 0.259 k,, + k; = 0.6025 e (Iv)
and ki c0s172.41° — k, c0s114° + k3 =cos(114° -172.41°)

—0.9912 k, + 0.4067 k, + ky = 0.5238 e (V)

Solving three simultaneous equations (iii), (iv) and (v), we get
k,=0.6; k,=0453; and k; = 0.12

Now from equation (ii),

:5—5 =41.7mm Ans.

a=

o
()]
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C :i =£ =55.2mm Ans.
k, 0453
and b=(a®+c? +d? —kg x2ac)t?

2 2 2 /2
= [41.7) +(55.2)% +(25)? 012 x2 x41.7>65.2] ~ =69.7mm Ans

The designed four bar mechanism AB, C,D in one position (i.e. for 8,, x, and @, y,) is
shown by thick linesin Fig. 25.13.

15

The other two positions of the four bar mechanism may be drawn by joining B,C, (i.e.
81, % and @, y1) and B,C; (i.e. 63, X3 and @3, Y3).
Note : In the above example, the motion of input link and output link is taken clockwise.

Example 25.6. Synthesize a four bar linkage, as shown in Fig. 25.14, using Freudenstein’s

equation to satisfy in one of its positions. The specification
of position 6, velocity w and acceleration a are as follows :

0=60°, w, =5rads a,= 2rads;
®=90% w,=2radls a,= 7 rads’.

Solution : Given: 6=60° ; w, =5radls; a, = 2 rad/s’;
®=90°, w, = 2radls; a, = 7 rad/s’

The four bar linkages is shown in Fig. 25.15. Let
AB = Input link = a,
BC = Coupler = b,
CD = Qutput link = ¢, and
AD = Fixed link = d.

The Freudenstein’'s equation is given by

ki cos@ —k, cos 8 +kg =cos(B-¢ ... (i)

Fig. 25.15
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d d a’-b% +c? +d?
k== ko=—; kn=—— -~ -
where 175 27 and K3 ac
Substituting the value of 6 and ¢ in equation (i),
ki c0s90° — ky cos60° + kg =cos(60° —90°)

ky X0 —ky x0.5 +kg =0.866

—0.5k, +kg =0.866 .. (i)
Differentiating equation (i) with respect to time,
. do . de . d(e-¢
kg x=sin@x— -k, x-sin 6x— =-=sin( B—-jp x—=
1 Pq e dt N
“kisin@ouy tkosin B =<€sin( 6-) & -4 ... (iii)
0 do de_ O
—T=qy,; and—=
H a9 T9H
—k; xsin90°x2 +k, Sin60°*5 = -sin(60°-90 9 (5 —2)
5/3, _3
-2k +—— ky ==
172
or k; =2.165k, —0.75 e (IV)
Now differentiating equation (iii) with respect to time,
. dw, de0 , O dow, da
-k, SN @x +w CoS P*—r K,Sin Bx—= +¢rcos O
L@ TG TACS PG Yoy a e UEH

=-sin(8-¢ {22 4 - ) cox 0-p £C-9

~ky Kin@x 0y + o cos ¢ kHsin xg +goos [
=-Rin(6-9 (0 —0) H & ~ ) co B-Jp|
~k Kin90°x7 +22 c0s90 ] +k,[1sin60 °x2 +57 cos60f
= ~[in(60°-909) (2-7) +(5 -2)* cos(60°-90
—k, (7 +0) +k,(1.732 +12.5) = —(2.5 +7.794)

~7k, +14.232k, = -10.294

or k, =2.033 k, +1.47 e (V)
From equations (iv) and (V),
2.165k, —0.75=2.033 k, +1.47 or k, =16.8
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From equation (V)
k; =2.165k, —0.75 =2.165%16.8 —0.75 =35.6
and from equation (ii),
ky= 05k, +0.866 = 0.5 x 16.8 + 0.866 = 9.266

Assuming the length of one of links say a as one unit, we get the length of the links as
follows:

Weknow that  k; =d/a or d=k;.a=35.6 units Ans.
k,=d/c or c=d/k,=35.6/16.8=2.12 units Ans.

_ a?-b2 +c2 +d2 _ 12 —b? +(2.12)% +(35.6)2

k
and 3 2ac Ix1x2.12
_p2 K2
9.266 = 1-b“ +4.494 +1267.36 _ 1272.854 -b
4.24 4.24
b? = 1272.854 — 9.266 x 4.24 = 1233.566
O b = 35.12 units Ans.

Example 25.7. Synthesize a four-bar mechanism to generate a function y = sin x for
0 < x< 90°. Therange of the output crank may be chosen as 60° while that of inut crank be 120°.
Assume three precision points which are to be abtained from Chebyshev spacing. Assume fixed

link to be 52.5 mm long and 6; =105° and ¢, =66"°.
Solution. Given : x=0; x:=90°;, A@=60% A6=120°; d=525mm;
6, =1.05°% @ =66°

The three values of x corresponding to three precision points (i.e. for n = 3), according to
Chebyshev spacing are given by

1 Oq2j =)0
.= + -= — .
X = (Xs *Xe) 2(>9: Xs)COSBTH wherej =1, 2, 3
1 1 2x1-1)0
0 % =(0+90) - (60-0) cosDT(Hizw )E
= 45 — 45 cos 30° = 6° (e j=1)
1 1 (2 x2 ~1)[]
X, ==(0+90) —=(90 —0) cos
> 2( ) 2( ) 0 ox3 H
=45-45c0s90° =45° (=2
1 1 2x3 -0
and %= (0+90) —2(90—0)cosé%5

=45-45¢c0s150° =84°
Since y = sin X, therefore corresponding values of y are

Y =sinX =sin6° =0.1045



Chapter 25 : Computer Aided Analysis and Synthesis of Mechanisms © 1033

Y, =sinx, =sin45° =0.707

and Y3 =SiNX; =sin84° =0.9945
Also Ys =SinXg =sin0° =0
and Yg =sinXz =sin90° =1

The relation between the input angle (8) and x is given by

B — 6
8 :95+XE xS (X; =Xs)» wherej =1, 2 and 3.

S
The above expression may be written as

AB
e] = eS +E(Xj _Xs)

The three values of 6 corresponding to three precision points are given by

AB

6, =65 +& X . (v %=0) ... ()
AB ..
6, =65 +& XXy ()
AB
0, = B +— xX
and 3= %t X% (1))

From equations (i), (ii) and (iii),
JAS] 120 R )
8, -6, :&(Xz =) :%(45 —6) =52 .. (iV)
v (v AX =X —Xg =90 -0 =90)

AB 120

0,-6, =— - =——(84 -45) =52°
378 =1 (5 =%;) % ( ) e (V)
AB 120
0; -6, =— (X3 =% ) =—— (84 —6) =104 ° i
and 3 AX( 3 —%) ) ( ) ... (iv)
Since 6, =105° (Given), therefore

0, =6, +52°=105°+52° =157 °
0; = 6, +52° =157 °+52 =209 °
The relation between the output angle (@) and y is given by

O =@ ~F By ~yo), whenj=1,2and3
Ye~ Vs

This expression may be written as

_ Ag
P =G +A_y(yj -Ys)
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The three values of ¢ corresponding to three precision points are given by

o 400 )
¢ =@ Ay %1 e (0 Y5 = 0) L (Vi)
Ag
¢ =¢ +A_y Y2 oo (vili)
- Ag )
and =@ +A_y XY3 o (iX)
From equations (vii), (viii) and (ix),
A 60
% -q fy"(yz ) =-(0.707 0.1045) 8615 ° )

e (AY =Y —ys=1-0=1)

A 60

0 -® _A$(y3 ) :T(O'Q% ©.707) 47.25 ° . (X0)
A 60

0 - _A$.(y3 ) :T(0'9945 ©.1045) 534 ° . (xii)

Since @ =66° (Given), therefore
@ =@ +36.15° =66 °436.15 ° 4102.15 °

@3 =@ +17.25°=102.15 °47.25 °=119.40 °

We have calculated above the three positionsi.e. the angular displacements (6,, 6, and 6,)
of the input crank and the three positions (@, ¢, and @,) of the output crank. Now let us find the
dimensions of the four bar mechanism.

Let a = Length of the input crank,
b = Length of the coupler,
¢ = Length of the output crank, and

d = Length of the fixed crank = 52.5 mm (Given)
We know that the Freudenstein displacement equation is
k, cos¢ —k, cos 8 +k; =cos( 8- ¢ ... (xiii)
2 12,242
where kl = 9; k2 = 9 and k3 = M
a c 2ac

The equation (xiii) for the first position of input and output crank (i.e. when 6, = 45° and
(= 66°) may be written as

ki cosq -k, cos§ +kg =cos(§ —¢)
ki c0s66° —ky c0s105° + kg =c05(105° —66°)
0.4067k, +0.2588k, +kg =0.7771 e (XiV)
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Similarly, for the second position (i.e. when 6, = 157° and @, = 102.15°),
ki cos@, —k,cos 6, +ky =cos( § -@)
kq €0s102.15° -k, c0S157° + kg =c0s(157° —102.15°)
-0.2105k; +0.9205k, +k; =0.5757 e (XV)
and for the third position (i.e. when 8, = 209° and @, = 119.4°),
ky COS@ ~k; COS 65 +kg =cos(& ~ @)
ki c0s119.4° -k, c0s209° + kg =c0s(209° -119.49)
— 0.4909k, +0.8746k, +k; =0.007 v (XVI)

Solving the three simultaneous equations (xiv), (xv) and (xvi), we get
k, =18, k,=1375 and k, = -0.311

Since the length of the fixed link (i.e. d = 52.5 mm) is known, therefore we get the length
of other links as follows:

We know that
k,=d/a or a=d/k, =525/18=29.17 mm Ans.
k,=d/c or c=d/k,=525/1375=3818 mm Ans
2 12,242
a“-b°+c” +d
d kn=—— -~ -
an 3 2ac
or b®= a?+c? +d? —kg x2ac
= (29.17) + (38.18)% + (52.5)? — (- 0.311)x 2 x 29.17 x 38.18 = 5758
O b=7588 mm Ans.

25.15.Least Square Technique

Most of the mechanisms are not possible to design even for five positions of the input and
output links. However, it is possible to design a mechanism to give least deviation from the specified
positions. Thisis done by using least square technique as discussed below :

We have already discussed that the Freudenstein’s equation is
ki cos@ —ky, cos 8 +k; —cos(6-¢ H

The angles § and @ are specified for a position. If 6; and @ are the angles for ith
position, then Freudenstein’s equation may be written as
kjcosq —kycos§ +k3 —cos(§ ~¢) H
Let e be the error which is defined as

n
e= Z[klcoscg —kycos § +kg —cos( § - ¢)]?
i=1
For e to be minimum, the partial derivatives of e with respect to k,, k,, k; separately must
be equal to zero, i.e.

E:O , Ezo,and E:O
akl ak2 0k3
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or

or

or

n
0 E:Zz[klcoscn -k, cos § +k3 —cos(® —¢)Jcos p B
ok &

n n n n
k'Y cos?q —k,§ cosqcos@ gy cos ¢ =Y cos( p -@cos @ - (1)
20 e 202,

n
Similarly, :Te:—zz[klcoscg —k, cos § +k3 —<cos( @ —¢)Jcos p D
Ei

2

klicosqq cos § +k2200323 +k3ZCosQ :Zcos((ﬁ -g)cos p ... (i)
Eil = = =

a n
Now izZZ[klcoscg —-ky,cos § +kz —cos(§ -¢)] D
i=1
n n n n
klzCOS(ﬂ +k22cosq +k321:zcos(a -) .. (i)
i=1 =1 =1 =

The equations (i), (ii) and (iii) are simultaneous, linear, non-homogeneous equations in

three unknowns k;, k, and k,. These equations can be solved by using Cramer’s rule.

25.16. Programme Using Least Square Technique

The following is a programme in Fortrans to find the ratio of lengths for different links by

using the least square technique.

The input variables are :
J = Number of specified positions
TH (1) = Angular displacements of the input link AB for | = 1 to J (degrees), and
PH (I) = Angular displacements of the output link DC for | = 1 to J (degrees).
The output variables are :
A, B, C, D = Ratio of the lengths of the links AB, BC, CD and AD respectively.
PROGRAM TO COORDINATE ANGULAR DISPLACEMENT OF THE
INPUT AND OUTPUT LINKS IN MORE THAN THREE POSITIONS TO
FIND RATIO OF DIFFERENT LINKS USING LEAST SQUARE TECHNIQUE

DIMENSION
READ (*, *) J

READ (*,*) (TH (1), 1 =1, ), PH (1), 1 = 1, J)

RAD =4 * ATAN (1.0) / 180

DO10K =1.J

Al=Al+(COS(PH (K)* RAD)) * * 2

A2 = A2+ (COS (TH (K) RAD ) ) * (COS (PH (K) * RAD ) )
A3 = A3+ (COS (PH (K) * RAD ) )

Bl=A2

B2=B2+ (COS (TH (K) * RAD ) ) * * 2
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B3 =B3+ (COS(TH (K) * RAD))

P1=A3

P2 = B3

P3=1J

TT = COS ( (TH (K) —PH (K) * RAD))

Q1=Q1+TT* COS (PH (K) * RAD)

Q2=Q2+ TT * COS (TH (K) * RAD

Q3=Q3+TT

D=A1* (B2* P3—B3* P2) +B1* (P2* A3—P3* A2) + P1L* (A2* B3—A3* B2)
D1=Q1* (B2* P3—B3* P2) + B1* (P2* Q3—-P3* Q2) + P1* (Q2* B3—-Q3* B2)
D2=A1* (Q2* P3—Q3* P2) +Q1l* (P2* A3—P3* A2) + PL* (A2* Q3—A3* Q2)
D3=Al1* (B2* Q3-B3* Q2) +B1* (Q2* A3—Q3* A2) + Q1 * (A2* B3—A3* B2)
Q=D/D1

R=-D/D2

P=SQRT (Q* Q+r*r+1.—2 *r*r*03/D)

WRITE (* ,9)Q, R, 1.

FORMAT (6X,’ Q, 7X, P, 7X,; r’, 7X,; D’ | 4F8 . 2)

STOP

END

Computer Aided Synthesis of Four Bar Mechanism with Coupler
Point

Consider a four bar mechanism ABCD with a couple point E, as shown in Fig. 25.16,

which is specified by r and Y.

YA
E
’ f v
;S e CN _______
/ 3
r, B - -
// a c
/
/
/ 0 d \
/ A o "
;o ,,*””%
, -
Y B,—”” p
/ o _)(X
0%= » X

Fig. 25.16. Four bar mechanism with a couple point.
Let 6;, 6, and B3 = Three positions of the input link AB,
r, r, and ry = Three positions of the coupler point E from point O, and
V1. Y2 and y3 = Three angular positions of the coupler point E from OX.

The dimensions a, ¢, e, f and the location of points A and D specified by (g, B) and (p, o)

respectively, may be determined as discussed below :



1038 e Theory of Machines

Considering the loop OABE, the horizontal and vertical components of vectors g, a, e and
r are

qcosP +acos6 +ecos d =r cos y ()
and gsnpB+asnB+esind=rsny .. (i)
Squaring equations (i) and (ii) and adding in order to eliminate angle &, we have

ql2r cos(y -P)] +a[2r cos(0-y] +* 9° 8% = -ga[2cos( -] ... (iii)

Let q=k ;a=k,; e®-g°-a% =k ;andqa=k, =k k .. (i)
Now the equation (iii) may be written as

ky[2r cos(y —B)] +ko[2r cos(8 -] g =2 +k4[2cos( 6 -] e (V)

Since k4 =k ks, therefore the equation (v) is difficult to solve for ki, ko, ks and k,. Such

type of non-linear equations can be solved easily by making them linear by some substitutions as
given below :

Let ki =li+Am; ko =l +Am, ; and kg =13 +Anmy o (Vi)
where A=Kqg =K ko =(Ig +Amy) (I, + Armp)
=yl +l Ampy +Amy |, +)\2mlmz
or mmp A2+ (M +lom ) A+l 1, =0
or AN +BA+C=0
~B+,/B? -4AC )
O A ¥V ... (Vii)
2A
where A=mym, ; B=(ljmy +l,m -1 ;andC=1,1, wo (Viii)
Substituting the values of k;, k,, k; and k, in equation (v),
(I +Amp)[2r cos(y = B] +(I; +Amp)[2r cos(8-Y] 13 + M)
=r? + \([2cos(6 - P)]
Equating the termswith \ and without )\ separately equal to zero, we get the components
into two groups, one with )\ and the other without ) . These components are
l,[2r cos(y —B)] +,[2r cos(B8 -] #5 =2 o (iX)

and my[2r cos(y —B)] +mp[2r cos(6-y] +my =2cos( 06— - (X
The equation (ix) for the three positions of 8, r and Y may be written three times as
follows:

l[2r, cos(y; —B)] H,[2r cos(q —Y)] 45 =% .. (i)
l,[2r, cos(y, —PB)] +l,[2r,c0s(8, —y)] H; :rz2 .. (xii)
l[2r; cos(ys —B] +H,[2r;c08(§ — )] 45 =5 e (i)

Similarly, equation (x) for the three positionsof 9, r and Y may be written three times as
follows:
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my[2r cos(y; ~B] +my[2r cos(§ - y)] 4m =2cos( § B .. (xiV)
my[2r cos(y, —B)] +mp[2rcos(6, —y)] Mz =2cos( § - e (XV)
my[2r cos(yz —P)] +mp[2r cos(6; — )] +my =2cos( @ —[ e (XVI)

The equations (xi), (xii) and (xiii) are three linear equationsin |, I, I;. Similarly, equations
(xiv), (xv) and (xvi) are three linear equations in m;, m, and m,. Assuming a suitable value of 3,

the values of |, I, I; and m;, m,, m, may be determined by using elimination method or Cramer’s
rule.

Knowing the values of I, I,, I; and m;, m,, m,, we can find the value of A from equation
(vii). Now the values of kj, k, and k; are determined from equation (vi) and hence g, a and e are

known from equation (iv). Using equation (i) or (ii), we can find the three valves of & i.e. &,
and 63. From equation (i), we have

ecosd =r cosy —qcos 3 -acos 0

0 5, = cost [T, cosy; —gcosf —acos § 0 .. (xvii)
e
Smilarly, 5, =cos ! EZ CoSY, ~(cos B ~acos &0 .. (xviii)
e
and 33 =cos LT3 C0Sy5 ~qC0Sp ~acos &L e (XiX)

e

Thus by considering the loop OABE, we can find the valuesof g, a, €, B and §.

Now considering the loop ODCE in order to find p, ¢, f, a and Y . The horizontal and
vertical components of vectorsp, ¢, f and r are

pcosa +ccos@ + f cos P =r cos y . (XX)
and psna+csn@+fsiny=rsny e (Xxi)

Since these equations are similar to equations (i) and (ii), therefore we shall proceed in the
similar way as discussed for loop OABE.

Squaring equations (xx) and (xxi) and adding in order to eliminate angle @, we have

p[2r cos(y —a)] + f[2r cos(W — V)] +c2 —p2 —f2 =2 +p f[2cos( Y- o (XXi0)
Let Pp=ks;f=ks;P—p°—f2=k,and pf=Kg=ksKs e (XXi)
Now equations (xxii) may be written as

ks[2r cos(y — )] +ks[2r cos(W—y)] +; = #g[2cos( W9 - (0X0V)

The equation (xxiv) is a non-linear equation and can be solved easily by making it linear
by some substitutions as given below :

Let Ks =l +A My 5 kg =lg +A Mg ; and ky =17 +A my e (XXV)
where A= kg =Kskg =(Ig + A, mp) (Ig + A, M)
=lglg +ls Ay + A my I + A2 my my
or my M AL + (Is My +lg M 1) Ay +l5 16 =0
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or DA2+EM+F=0
~E +,/E2 -4DF .
O A= e (XxVi)
2D
where  D=mymg;E=(smy +lgmy -1) ;and F =1 I v (Xxvi)

Substituting the values of kg, kg, k; and kg in equation (xxiv),
(Is + Ay mg)[2r cos(y —a)] +(Ig + A, mg)[2rcos(P —y)] H;, +Am,
=12 + \[2cos(P - a)]

Equating the termswith \ and without )\ separately equal to zero, we get the components
into two groups, one with A and the other without A . These components are

l5[2r cos(y — a)] +lg[2r cos(P—y)] H, =2 .. XXV

and mg[2r cos(y — a)] +mg[2r cos(y —y)] +m; =2cos( Y -9 .. (XXiX)

The equation (xxviii) for the three positions of r, Y and Y may be written three times as
follows :

I5[2ry cos(y; —a)] +lg[2r; cos(yy —y)] Ho :rl2 v (XXX)
I5[2r, cos(y, —a)] +lg[2r, cos(W, — V)] H7 :r22 o (Xxxi)
I5[2rz cos(y; —a)] +lg[2r; c0s(P3 — )] Ho :r32 o (XXXi1)

Similarly, equation (xxix) for the three positions of r, Y and Y may be written three times
asfollows:

my[2r;y cos(y; — a)] +mg[2r cos(Uy —y)] +my =2cos( § —0 we (XXxiii)
mg[2r, cos(y, — a)] +mg[2r, cos(P, —y,)] +Hmy =2cos( Yy —9 . (Xxxiv)
mg[ 2r3 coS(ys — )] +mg[2r3 cos(Ws — )] +my =2cos( Yy -9 e (XXXV)

The equations (xxx), (xxxi) and (xxxii) are three linear equationsinl, |5 and .. Similarly,
equations (xxxiii), (xxxiv) and (xxxv) are linear equations in m,, m; and m,. Assuming a suitable
value of a, thevauesof I, I, |, and m;, m;, m, may be determined by using elimination method
or Cramer’srule.

Knowing the values of I, I, |, and mg, mg, m,, we can find the value of A; from equation
(xxvi). Now the values of k., ks and k;, are determined from equation (xxv) and hence p, f and c are
known from equation (xxiii).

Assuming the value of ), the corresponding values of Y, and Y3 may be calculated as
follows:

Since the angular displacements of the coupler link BCE is same at the points B and C,
therefore

Yoty =% -9
or Yo = +(% -9) wer (XXX
Similarly, Y3 =Y +( - Q) . (OXXViT)

If the mechanism is to be designed for more than three positions of the input link AB and
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the same number of positions of the couple point E, then the least square technique is used. The
error function from equations (ix) and (x) are defined as

g = Z[Il{Zr cos(y - B} Ho{2rcos(8-Y} 43 +2]° e (XXXViT)

and & ="y [m{2rcos(y ~B} +my{2r cos(8-y} g -2cos( 6-B? er (O0XiX)

e ———
An aircraft assembling plant.
Note : This picture is given as additional information and is not a direct example of the current chapter.

For e, and e, to be minimum, the partial derivatives of e, with respect to I, I,, |; and
partial derivatives of e, with respect to m;, m,, m, separately must be equal to zero, i.e.

% .0,%- ;a—el=05
ool ol D
and aﬁ:o;aﬁzo;aﬁzog cer (XXXX)
omy  0mp omg [
og

First consider when %~ =0,
al,

n
ZZ%Zrcos(y—B) +,2rcos(8-y g —rZEZrcos( vy-B 9
T

or 1, [2r cos(y =P)1? +, S [2r cos( 6 - y][2r cos( y - [§
12 ZZ : n
+3'y [2r cos(y -] = [2r cos(y =BIr® . (xuoxi)
1 1
)
Similarly, for %:0,
;'S [2r cos(y —P)][2rcos(8-y] #,§ [2r cos( B-}]?
2 2

n

H3 ) [2rcos(8-y] = [2rcos(8-91r? (00
1 1
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ael n n n 5
andfor = =0 li ) [2rcos(y—-P]+, ) [2rcos(B-y] #3H 1 =% r o (XXX
dl5 Z Z Z Z ( )
The above three equations can be solved by using Cramer’'srule to find |, 1, and I.

0e,
In the similar way as discussed above, for H =0

m %y [2r cos(y ~P]? +m, y [2r cos(6-y][2r cos( y -3
1 1

+msz[2r cos(y - B :Z[Zr cos(0-Pl[2rcos( y—P ... (xxxxiv)
T T
0
Similarly, for %:0,

le[Zr cos(y —P)] +2r cos(8-Y] +mZZ[2r cos( 6-3}°
T T

n

+n132[2r cos(8-Y)] =Z[2r cos(6-P][2rcos( 8- . (xxxxv)

and for :;CZ:O,

:!

le[Zrcos(y—B)] +m22[2rcos(6—\)] m21 :z[Zrcos( B-) ... (xxxvi)
1 1 1

The above three equations can be solved by using Cramer’s rule to find m;, m, and m,.

Knowing the values of I, I,, I; and m;, m,, m,, we can find the value of A from equation
(vii) and k;, k,, k, from equation (vi). Thus g, a and e are determined. Now 9,,d,,8; may be
determined by using equation (i) or (ii).

The values of p, ¢ and f are obtained by solving equation (xxiv) in the similar way as
discussed earlier.

25.18. Synthesis of Four Bar Mechanism For Body Guidance

Consider the three positions of arigid planer body containing the points A and B as shown
in Fig. 25.17 (a). The four bar mechanism for body guidance, considering the three positions of the
body, may be designed graphically as discussed below.

1. Consider the three positions of the points A and B suchas A, A,, A, and B,, B, B; as
shown in Fig. 25.17 (a).

2. Find the centre of a circle which passes through three points A;, A,, A,. Thisis obtained

by drawing the perpendicular bisectors of the line segments A; A, and A, A,. Let these bisectors
intersect at O,. It is evident that arigid link A O, pinned to the body at point A and pinned to the
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ground at point O, will guide point A through its three positions A,, A, and A,
Y

A
, v4
A Lo .
1 i : L
/
o A, , /
I~—
I < N/
e
1 A
/ YA .= —\—%B
1 e
! d : MAg—3
! 4 1 ,
! // 7z
1 s 17
I,/ 4
2
B
On
» X
(@ (b)

Fig. 25.17. Four bar mechanism for body guidance.

3. Similarly, find the centre O of a circle which passes through three points B, B,, B. It
isevident that arigid link B Oy pinned to the body at point B and pinned to the ground at point Oy
will guide point B through its three positions B, B, and B,.

4. The above construction forms the four bar mechanism O, ABO, which guides the body
through three specified positions. Fig. 25.17 (b) shows afour bar mechanism in these three positions.

The points O, and Og may be determined analytically as discussed below :

Consider the three positions of the point Asuch as A, A, A,. Let the co-ordinates of these
points are A, (X}, Y,) ; A, (X, , Y,) and A; (X;, Y,). Let the co-ordinates of the point O, are (X, y).
Now we know that

Distance between points A; and O,,

AOx =10 =% +(yy ~)*"? 0
Similarly, distance between points A, and O,,
PoOp =10 =) +(y2 =y)°1'? e (i)
and distance between points A; and O,,
AOn =[x = %)% +(yg —y)?T"'? D)

For the point O, to be the centre of a circle passing through the points A;, A, and A, the
distances A,0,, A,O, and A;0, must be equal. In other words,

AOp = A0p = A0p

Now considering AOj = AOp , we have
/2 1/2 _
a3+ -2H oo 0% v 93 e @V
Similarly, considering A,Op = AgOp , we have

/12 /12
Q=%+ (2 ~y73 06 -2 +ys -H )

Squaring both sides of the equations (iv) and (v) and simplifying, we get the following two
equations in the unknowns x and y.

2x(% =) +2y (Y5 —=w1) +(& —x3) +H(y? -y3)

and 2X(Xg = Xo) +2y (Y5 — o) +(x& —X&) +(y2 —y3)

0 . (Vi)
0 ... (Vi)
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The equations (vi) and (vii) are simultaneous equations and may be solved to find the
co-ordinates x, y of the point O,. This point O, becomes the location of the fixed pivot guiding the
point A. The length of the guiding link O, A may be determined by any of the equations (i), (ii) or
(iii).

In the similar way, as discussed above, we can find the location of the fixed pivot point Og
and the length of the link OgB.

Example 25.8. Synthesize a four bar mechanism to guide a rod AB through three consecu-
tive positions A;B,, A,B, and A,B, as shown in Fig. 25.18.

YA
A2
B.(6, 6) A,(12, 6)
?A@RE o Yl
B,(5, 2) 50°
B,(2, 0
)\ 1(2,0) .y
Fig. 25.18

Solution : In order to synthesize afour bar mechanism, we shall use the graphical method
as discussed below :

1. Join points A,, A, and A,, A,. Draw the perpendicular bisectors of line segments A/A,
and AJA; to intersect at O,, as shown in Fig. 25.19. It is evident that arigid link O,A, pinned to the
body at point A, and pinned to the ground at point O, will guide point A, through its three posi-
tions.

Fig. 25.19
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2. Similarly, join points B,, B, and B,, B,. Draw the perpendicular bisectors of line seg-
ments B,B, and B,B, to intersect at Oy as shown in Fig. 25.19. It is evident that arigid link OB,
pinned to the body at point B, and pinned to the ground at point O, will guide point B, through its
three positions.

3. From above we see that the points O, and Oy are the required fixed points and
O, A, B, Og isone position of the four bar mechanism. The other two positions of the mechanism

will be O AyB,Og and Op AgB;Og .

25.19. Analytical Synthesis for Slider Crank Mechanism
A dlider crank mechanism is shown in Fig. 25.20. In the sysnthesis problem of the dlider
crank mechanism, the displacement (s) of the slider C has to co-ordinate with the crank angle (8)

in a specified manner. For example, consider that the displacement of the slider is proportional to
crank angle over a given interval, i.e.

S-§ =C(6-6&),for 65<6<6; . (i)
where C = Constant of proportionality, and
s = Displacement of the slider when crank angleis 9.

The subscripts g and ( denote
starting and finishing positions.

The synthesis of aslider crank B
mechanism for three precision points
is obtained as discussed below.

The three positions of the crank i
(61, 8, and 63) may be obtained in C':L“I """"""" C I:
i »X

the similar way as discussed in Art.  A()°

25.10 and the corresponding three 7 ‘D i
positions of the slider (s, s, and s;) are - > S
obtained from the given condition asin acos 0
equation (i). Now the dimensions a, b
and ¢ may be determined as discussed Fig. 25.20. Slider crank mechanism.
below :
In aright angled triangle BC'C,
BC =b; BC'=asin®-c , and CC' =s—acos8
O b? = (asin@-c)? +(s —acos §°
=a?sn?0+c? -2acsin 9+s? +acos? B -2sacos 0
=a® +c? —2acsin6-s? —2ascos 0
or 2ascosf +2acsin B +b? —a® —¢? =<
kySC0SB +k,Sin 8 —ky =s? ... (i)

where ki =2a ; ky =2ac and k3 =a® -b? +c? N (11))
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For the three different positions of the mechanism i.e. for (6;,6, 63) and (s, s,, S;), the
equation (ii) may be written as

ky 5 0056, +k,SinB, —k; =57 )
k; s, cosB, +k,Sn 6, —k; =7 e (V)
ki S;0080; +k, SN 6, —k; =S5 e (Vi)

The equations (iv), (v) and (vi) are three simultaneous equations and may be solved for
three unknowns k;, k, and k;. Knowing the values of k;, k, and k;, the lengths a, b and ¢ may be
obtained from equations (iii).

Example 25.9. Synthesize a slider crank mechanism so that the displacement of the slider
is proportional to the square of the crank rotation in the interval 45° < <135°. Use three preci-
sion points with Chebyshev's spacing.

Solution : Given. 85 =45° ; 6 =135°

First of all, let us find the three precision points (i.e. X;, X, and x;). We know that

X.—E( + )_E( _ )cosDT(Zj -0 o
'_2X5 X 2XF Xs ETE,Wherej—l,ZandS

Assuming the starting displacement of the slider (sg) = 100 mm and final displacement of
the slider (s;) = 30 mm. It may be noted that for the crank rotating in anticlockwise direction, the
final displacement will be less than the starting displacement.

1 1 Ot(2x1-1)0
= (100 +30) —= (30 -100) cos =95.3 mm.
O X 5 ( ) > ( ) WE

(v X%=Ss ) X% =5 andn=23)
1 1 (2 x2 -1)0

X, == (100 +30) —= (30 —100) cos =
2 2( ) 2( ) WE 65 mm
1 1 Ot(2 x3 =)0
X2 = — (100 +30) —= (30 —100) cos =347
and 3 2( ) 2( ) Eizxg E 34.7 mm

The corresponding three values of @ are given by

8. — 6,
0, =65+ 3(x; %) ;j=1,2ad3
XF_XS

. B, =45+ >~ % (953 100) =51.04°
30-100

135-45 65 _100) = 0°
30-100

and 6, =45 +1357495 54 7 100) =128.96°
30-100

6, =45+

Since it is given that the displacement of the dlider (s)
is proportional to the square of the crank rotation (8 ), therefore, -
for the displacement from initial position (sJ) to s when crank /4 Pelt-conveyor that can trans-
port small components.

rotates from initial position (85) to 8, we have Note : This picture is given as
additional information and is not a
direct example of the current chapter.
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S— :C(G—GS)2 ... (0 is expressed in degrees)

C- s-s _ 30-100 _ -7
D _(9_95)2 _(135_45)2 _% (Taklng S=$:;and e:eF)

Now the three positions for the slider displacement (s) corresponding to the three positions

of the crank angle (9) are given by

or

or
and

or

5 =5 +C (6, - &) =100 —8—10 (51.4 —45)2 =99.7 MM

s, =& +C (8, —6)? =100 —8%0(90 _45)2 =825 mm

s, = +C (8, - B)? =100 —8%0 (128.96 ~45)° =39.08 mm

Now the three equations relating the (8,,s,), (6,,s,) and (8, s;) are written as
ky x99.7c0s51.04° +k, Sin51.04° -k, =(99.7)*
62.7k, +0.7776k, —k; =9940 0
Similarly, k x82.5c0890° +k, in90° -k, =(82.5)°
k, —kg =6806 ... (i)
k;, x39.08c0s128.96° +k, Sin128.96° —k, =(39.08)°

-24.57k, +0.776k, —k; =1527 .. (iii)
The equations (i), (ii) and (iii) are three simultaneous equations in three unknowns k;, k,

and k,. On solving, we get

and

or

k, =96.4; k,=13084; and k; = 6278
We know that k, =2a,or a=k, /2= 96.4/2=482mm Ans.
k,=2acor c=Kk,/2a=13084/2x 482 = 1357 mm Ans.

ks = a? -b? +c?

b? =a? +c? —k; =(48.2)? +(135.7)? -6278 =14 460
b = 120.2 mm Ans.

EXERCISES

In afour bar mechanism PQRS the link PSis fixed. The length of the links are : PQ = 62.5 mm ;
QR =175 mm ; RS= 112.5 mm and PS = 200 mm. The crank PQ rotates at 10 rad/s clockwise.
Find the angular velocity and angular acceleration of the links QR and RSfor the values of angle
QPSat an interval of 60°.

In aslider crank mechanism, the crank AB = 100 mm and the connecting rod BC = 300 mm. When
the crank is at 120° from the inner dead centre, the crank shaft has a speed of 75 rad/s and an
angular acceleration of 1200 rad/s” both clockwise. Find at an interval of 60° 1. the linear velocity
and acceleration of the dlider, and 2. the angular velocity and angular acceleration of the rod, when
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40

Y 4

30 —

20

10

A

@/@ 5 -
(18, SZ)NMQ, 25) | B
* 715, 4)

(a) the line of stroke of the dlider is offset by 30 mm, and
(b) the line of stroke of the dider is along the axis of rotation of the crank.
A mechanism is to be designed to generate the function
y = x08
for the range 1 < x < 3, using three precision points. Find the three values of x and y.
[Ans. 1.134, 2, 2.866 ; 1.106, 1.741, 2.322]

Determine the three precision positions of input and output angles for a mechanism to generate a
function

y= X1.8
when x varies from 1 to 5, using Chebyshev’s spacing. Assume that the initial values for the input
and output crank are 30° and 90° respectively and the difference between the final and initial
values for the input and output cranks are each equal to 90°.

[Ans. 36°, 75°, 94.48°; 91.22°, 144.57°, 181.22°]
Synthesize a four bar linkage using Freudenstein’s equation to generate the function y = x*2 for
theinterval 1< x <5, Theinput crank isto start from 85 =30° and is to have a range of 90°. The
output follower isto start at @ =0° and is to have a range of 90°. Take three accuracy points at X
=1,3and5.
A four bar function generator is used to generate the function y = 1/x for 1< x < 3 between the

input angle of a crank and the angle the follower makes with the frame. Find the three precision
points from Chebyshev's spacing if the initial values of input angle (i.e. crank angle) and output
angle (i.e. follower angle) are 30° and 200° respectively. The difference between the fina and
initial values of the crank and follower angles are each equal to 90°.

Synthesize a four bar linkage that will generate a function y = x%2 for the range 1< x<5. Take

three precision points : 65 =30°% @ =60° and A8 = Ap =90  where 85 and ¢ represent respec-
tively the initial angular positions of the input and output crank; AB and Ag are respectively the
ranges of the angular movements of the input and output crank.

Synthesize a four bar mechanism to generate the function y = log x, where x varies between 1 and
10. Use three accuracy points with Chebyshev's spacing. Assume 8¢ = 45°; 6 = 105°; ¢ = 135°
and @ = 225°. Take the length of the smallest link equal to 50 mm.

Synthesize a four bar mechanism to move the rod AB as shown in Fig. 25.21, through the positions
1, 2 and 3. The end points A and B are used as moving pivot points.

Y 4

2 32) B, (30, 35)
1 ’

@1 21)§\@ 34 M
’ ° (1.5,3) 2,2)A, B,(3, 2)

B, (46, 16) 2
(2,1)A, B,(3, 1)

Fig. 25.21 Fig. 25.22
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Design a four bar mechanism to guide the door in and out with little rotation until it clears the
surrounding structure, after which it swings fully open to one side. The three positions of such a
door under going this type of motion is shown in Fig. 25.22. The points A and B are used as
moving pivots that guides the body through the three positions.

DO YOU KNOW ?

Explain Freudenstein’s method of three point synthesis of mechanisms.
Derive the expressions for displacement, velocity and acceleration of a four bar mechanism.

What do you understand by coupler curves ? Describe the method of obtaining the co-ordinates of
a coupler point in a slider crank mechanism.

Explain synthesis of mechanism with examples. What do you understand by

(a) Type synthesis ; (b) Number synthesis ; and (c) dimensional synthesis.
Describe the classifications of synthesis problem.

Write an expression for determining the precision points.

Discuss the method of determining the angles for input and output link in afour bar mechanism for
function generation.

Describe the method of designing a four bar mechanism as a function generation.

OBJECTIVE TYPE QUESTIONS

The analysis of mechanism deals with
(a) the determination of input and output angles of a mechanism
(b) the determination of dimensions of the links in a mechanism
(c) the determination of displacement, velocity and acceleration of the linksin a mechanism
(d) none of the above

The synthesis of mechanism deals with
(a) the determination of input and output angles of a mechanism

(b) the determination of dimensions of the links in a mechanism

(c) thedetermination of displacement, velocity and acceleration of the links in a mechanism
(d) none of the above
The three precision pointsin therange 1< x< 3 are

(@) 11,2, 26 (b) 1.6, 2.5, 2.95

(c) 1.134, 2, 2.866 (d) 1.341, 2, 2.686

For a four bar mechanism, as shown in Fig. 25.23 the Freudenstein’s equation is

(@) kicosB+kycosp+ky =cos(0- @
(b) kqcosB—k,cos@+ks =cos( 6-¢
(c) kycos@+k,cosB +kg =cos( 06—

(d) kqcose—k,cos0+ks =cos( 6 -¢

2 12 +c2 442
where kﬁ% ; kf% ; ksz%
Fig. 25.23
ANSWERS
1 (9 2. () 3.(0) 4. (d)

o FIRST
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